Geometric frustration and Dzyaloshinskii-Moriya interactions in a quantum star lattice hybrid copper sulfate

Physical Review B(2024)

引用 0|浏览5
暂无评分
摘要
We study the magnetism of a layered, spin-1/2 organic-inorganic copper sulfate, which is a close realization of the star lattice antiferromagnet, one of the playgrounds of geometric frustration and resonating valence bond physics in two spatial dimensions. Our thermodynamic measurements show no ordering down to 0.1 K and a characteristic field-induced entropic shift, revealing the presence of an infinite number of competing states down to very low energy scales. The response to external magnetic fields shows, in addition, a peculiar anisotropy, reflected in the formation of a 1/3 magnetization plateau (stable up to full saturation around 105 T) and a paramagnetic, Curie-like susceptibility for one direction of the field (H∥ c), and a completely different response in other field directions. Our first-principles density functional theory calculations and exact diagonalizations show that these experimental puzzles are distinctive signatures of a strong interplay between geometric frustration and sizable Dzyaloshinskii-Moriya interactions, and the emergence of a continuous U(1) symmetry at low energy scales.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要