Two-Step Perovskite Solar Cells with > 25% Efficiency: Unveiling the Hidden Bottom Surface of Perovskite Layer

ADVANCED MATERIALS(2024)

引用 0|浏览9
暂无评分
摘要
While significant efforts in surface engineering have been devoted to the conversion process of lead iodide (PbI2) into perovskite and top surface engineering of perovskite layer with remarkable progress, the exploration of residual PbI2 clusters and the hidden bottom surface on perovskite layer have been limited. In this work, a new strategy involving 1-butyl-3-methylimidazolium acetate (BMIMAc) ionic liquid (IL) additives is developed and it is found that both the cations and the anions in ILs can interact with the perovskite components, thereby regulating the crystallization process and diminishing the residue PbI2 clusters as well as filling vacancies. The introduction of BMIMAc ILs induces the formation of a uniform porous PbI2 film, facilitating better penetration of the second-step organic salt and fostering a more extensive interaction between PbI2 and the organic salt. Surprisingly, the oversized residual PbI2 clusters at the bottom surface of the perovskite layer completely diminish. In addition, advanced depth analysis techniques including depth-resolved grazing-incidence wide-angle X-ray scattering (GIWAXS) and bottom thinning technology are employed for a comprehensive understanding of the reduction in residual PbI2. Leveraging effective PbI2 management and regulation of the perovskite crystallization process, the champion devices achieve a power conversion efficiency (PCE) of 25.06% with long-term stability. Herein, the often-overlooked PbI2 residual and its detailed impact on device performance are thoroughly investigated. Leveraging effective PbI2 management and precise regulation of the perovskite crystallization process, the champion devices achieve a PCE of 25.06% with long-term stability. image
更多
查看译文
关键词
ionic liquid,lead iodide,perovskite solar cells,stability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要