Identification of key molecules in the formation of portal vein tumor thrombus in hepatocellular carcinoma based on single cell transcriptomics and in vitro experiments.

Man Zhang,Chenglei Su, Xiaoyu Liu,Shuqun Hu,Xianliang Yan

Translational cancer research(2024)

引用 0|浏览0
暂无评分
摘要
Background:The presence of portal vein tumor thrombus (PVTT) is a significant indicator of advanced-stage hepatocellular carcinoma (HCC). Unfortunately, the prediction of PVTT occurrence remains challenging, and there is a lack of comprehensive research exploring the underlying mechanisms of PVTT formation and its association with immune infiltration. Methods:Our approach involved analyzing single-cell sequencing data, applying high dimensional weighted gene co-expression network analysis (hdWGCNA), and identifying key genes associated with PVTT development. Furthermore, we constructed competing endogenous RNA (ceRNA) networks and employed weighted gene co-expression network analysis (WGCNA), as well as three machine-learning techniques, to identify the upstream regulatory microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) of the crucial mRNAs. We employed fuzzy clustering of time series gene expression data (Mfuzz), gene set variation analysis (GSVA), and cell communication analysis to uncover significant signaling pathways involved in the activation of these important mRNAs during PVTT development. In addition, we conducted immune infiltration analysis, survival typing, and drug sensitivity analysis using The Cancer Genome Atlas (TCGA) cohort to gain insights into the two patient groups under study. Results:Through the implementation of hdWGCNA, we identified 110 genes that was closely associated with PVTT. Among these genes, TMEM165 emerged as a crucial candidate, and we further investigated its significance using COX regression analysis. Furthermore, through machine learning techniques and survival analysis, we successfully identified the upstream regulatory miRNA (hsa-miR-148a) and lncRNA (LINC00909) that targeted TMEM165. These findings shed light on the complex regulatory network surrounding TMEM165 in the context of PVTT. Moreover, we conducted CIBERSORT analysis, which unveiled correlations between TMEM165 and immune infiltration in HCC patients. Specifically, TMEM165 exhibited associations with various immune cell populations, including memory B cells and CD8+ T cells. Additionally, we observed implications for immune function, particularly in relation to immune checkpoints, within the context of HCC. Conclusions:The regulatory axis involving TMEM165, hsa-miR-148a, and LINC00909 emerges as a crucial determinant in the development of PVTT in HCC patients, and it holds significant implications for prognosis. Furthermore, alterations in the TMEM165/hsa-miR-148a/LINC00909 regulatory axis exhibit a strong correlation with immune infiltration within the HCC tumor microenvironment, leading to immune dysfunction and potential failure of immunotherapy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要