Ligand Equilibrium Influences Photoluminescence Blinking in CsPbBr3: A Change Point Analysis of Widefield Imaging Data

Shaun Gallagher, Jessica Kline, Farzaneh Jahanbakhshi, James C. Sadighian, Ian Lyons, Gillian Shen, Andrew M. Rappe,David S. Ginger

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Photoluminescence intermittency remains one of the biggest challenges to realizing perovskite quantum dots (QDs) as scalable single photon emitters. We compare CsPbBr3 QDs capped with different ligands, lecithin, and a combination of oleic acid and oleylamine, to elucidate the role of surface chemistry on photoluminescence intermittency. We employ widefield photoluminescence microscopy, sampling the blinking behavior of hundreds of QDs. Using change point analysis, we achieve the robust classification of blinking trajectories, and we analyze representative distributions from large numbers of QDs (Nlecithin = 1308, Noleic acid/oleylamine =1317). We find that lecithin suppresses blinking in CsPbBr3 QDs compared to oleic acid/oleylamine. Under common experimental conditions, lecithin-capped QDs are 7.5 times more likely to be non-blinking and spend 2.5 times longer in their most emissive state, despite both QDs having nearly identical solution photoluminescence quantum yields. We measure photoluminescence as a function of dilution and show that the differences between lecithin and oleic acid/oleylamine capping emerge at low concentrations during preparation for single particle experiments. From experiment and first principles calculations, we attribute the differences in lecithin and oleic acid/oleylamine performance to differences in their ligand binding equilibria. Consistent with our experimental data, density functional theory calculations suggest a stronger binding affinity of lecithin to the QD surface compared to oleic acid/oleylamine, implying a reduced likelihood of ligand desorption during dilution. These results suggest that using more tightly binding ligands is a necessity for surface passivation and consequently, blinking reduction in perovskite QDs used for single particle and quantum light experiments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要