Scaling regimes of the one-dimensional phase turbulence in the deterministic complex Ginzburg-Landau equation

Francesco Vercesi, Susie Poirier,Anna Minguzzi,Léonie Canet

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
We study the phase turbulence of the one-dimensional complex Ginzburg-Landau equation, in which the defect-free chaotic dynamics of the order parameter maps to a phase equation well approximated by the Kuramoto-Sivashinsky model. In this regime, the behaviour of the large wavelength modes is captured by the Kardar-Parisi-Zhang equation, determining universal scaling and statistical properties. We present numerical evidence of the existence of an additional scale-invariant regime, with dynamical scaling exponent z=1, emerging at scales which are intermediate between the microscopic, intrinsic to the modulational instability, and the macroscopic ones. We argue that this new regime is a signature of the universality class corresponding to the inviscid limit of the Kardar-Parisi-Zhang equation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要