A spatio-temporal model to detect potential outliers in disease mapping

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
Spatio-temporal disease mapping models are commonly used to estimate the relative risk of a disease over time and across areas. For each area and time point, the disease count is modelled with a Poisson distribution whose mean is the product of an offset and the disease relative risk. This relative risk is commonly decomposed in the log scale as the sum of fixed and latent effects. The Rushworth model allows for spatio-temporal autocorrelation of the random effects. We build on the Rushworth model to accommodate and identify potentially outlying areas with respect to their disease relative risk evolution, after taking into account the fixed effects. An area may display outlying behaviour at some points in time but not all. At each time point, we assume the latent effects to be spatially structured and include scaling parameters in the precision matrix, to allow for heavy-tails. Two prior specifications are considered for the scaling parameters: one where they are independent across space and one with spatial autocorrelation. We investigate the performance of the different prior specifications of the proposed model through simulation studies and analyse the weekly evolution of the number of COVID-19 cases across the 33 boroughs of Montreal and the 96 French departments during the second wave. In Montreal, 6 boroughs are found to be potentially outlying. In France, the model with spatially structured scaling parameters identified 21 departments as potential outliers. We find that these departments tend to be close to each other and within common French regions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要