cuFastTuckerPlus: A Stochastic Parallel Sparse FastTucker Decomposition Using GPU Tensor Cores

arxiv(2024)

引用 0|浏览2
暂无评分
摘要
Sparse tensors are prevalent in real-world applications, often characterized by their large-scale, high-order, and high-dimensional nature. Directly handling raw tensors is impractical due to the significant memory and computational overhead involved. The current mainstream approach involves compressing or decomposing the original tensor. One popular tensor decomposition algorithm is the Tucker decomposition. However, existing state-of-the-art algorithms for large-scale Tucker decomposition typically relax the original optimization problem into multiple convex optimization problems to ensure polynomial convergence. Unfortunately, these algorithms tend to converge slowly. In contrast, tensor decomposition exhibits a simple optimization landscape, making local search algorithms capable of converging to a global (approximate) optimum much faster. In this paper, we propose the FastTuckerPlus algorithm, which decomposes the original optimization problem into two non-convex optimization problems and solves them alternately using the Stochastic Gradient Descent method. Furthermore, we introduce cuFastTuckerPlus, a fine-grained parallel algorithm designed for GPU platforms, leveraging the performance of tensor cores. This algorithm minimizes memory access overhead and computational costs, surpassing the state-of-the-art algorithms. Our experimental results demonstrate that our method achieves a speedup of 3X to 5X compared to state-of-the-art algorithms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要