Analysis of Pressure Characteristics of Ultra-High Specific Energy Lithium Metal Battery for Flying Electric Vehicles

Wei Shi, Jin Chai, Ruofan Xu

Electronics(2024)

引用 0|浏览5
暂无评分
摘要
The lithium metal battery is likely to become the main power source for the future development of flying electric vehicles for its ultra-high theoretical specific capacity. In an attempt to study macroscopic battery performance and microscopic lithium deposition under different pressure conditions, we first conduct a pressure cycling test proving that amplifying the initial preload can delay the battery failure stage, and the scanning electron microscope (SEM) shows that the pressure is effective in improving the electrode’s surface structure. Secondly, we analyze how differing pressure conditions affect the topography of lithium deposits by coupling the nonlinear phase-field model with the force model. The results show that the gradual increase in the external pressure is accompanied by a drop in the length of the dendrite and the migration curvature in the diaphragm, and the deposition morphology is gradually geared towards smooth and thick development, which can significantly reduce the specific surface area of lithium dendrite. However, as cyclic charging and discharging continue, the decrease in the electrolyte diffusion coefficient results in higher internal stress inside the battery, and thus the external pressure must be increased so as to achieve marked inhibitory effects on the growth of the lithium dendrite.
更多
查看译文
关键词
external pressure,lithium metal battery,phase-field model,electrochemical–force coupling model,lithium dendrite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要