Unsupervised machine learning approach for tailoring educational content to individual student weaknesses
High-Confidence Computing(2024)
Abstract
By analyzing data gathered through Online Learning (OL) systems, data mining can be used to unearth hidden relationships between topics and trends in student performance. Here, in this paper, we show how data mining techniques such as clustering and association rule algorithms can be used on historical data to develop a unique recommendation system module. In our implementation, we utilize historical data to generate association rules specifically for student test marks below a threshold of 60%. By focusing on marks below this threshold, we aim to identify and establish associations based on the patterns of weakness observed in the past data. Additionally, we leverage K-means clustering to provide instructors with visual representations of the generated associations. This strategy aids instructors in better comprehending the information and associations produced by the algorithms. K-means clustering helps visualize and organize the data in a way that makes it easier for instructors to analyze and gain insights, enabling them to support the verification of the relationship between topics. This can be a useful tool to deliver better feedback to students as well as provide better insights to instructors when developing their pedagogy. This paper further shows a prototype implementation of the above-mentioned concepts to gain opinions and insights about the usability and viability of the proposed system.
MoreTranslated text
Key words
Recommendation system,Clustering,F-P growth,Apriori,Associative pattern,E-learning sphere,Online learning
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined