Ultrafast switching in spin field-effect transistors based on borophene nanoribbons.

Physical chemistry chemical physics : PCCP(2024)

引用 0|浏览1
暂无评分
摘要
Borophene, owing to the high mobility and long spin coherent length of its carriers, presents significant opportunities in ultrafast spintronics. In this research, we investigate the spin-dependent conductance of a Datta-Das field-effect transistor (FET) based on an armchair β12-borophene nanoribbon (BNR) using the tight-binding (TB) Hamiltonian in combination with the non-equilibrium Green's function (NEGF) method. The spin FET electrodes are magnetized by ferromagnetic (FM) insulators arranged in both parallel and anti-parallel configurations. This device acts as a controllable spin filter in the presence of Rashba spin-orbit coupling (SOC) for both configurations and its spin current is well modulated by a gate voltage and the strength of the Rashba SOC. For anti-parallel configurations, an energy gap emerges within a certain range of incoming electron energy which can disappear for electrons with flipped spin under the Rashba SOC. Furthermore, our findings indicate that the electron-electron (e-e) interaction helps the spin precession of electrons injected into the spin FET channel, thereby strengthening the Rashba SOC effect. Notably, a gate voltage can adjust the current-voltage (I-V) characteristics of this device. Finally, our calculations demonstrate that under the same conditions, the current magnitude and Ion/Ioff ratio of borophene spin FETs are several times higher than those of graphene and silicene spin FETs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要