Compression after impact (CAI) failure mechanisms and damage evolution in large composite laminates: High-fidelity simulation and experimental study

Composite Structures(2024)

引用 0|浏览0
暂无评分
摘要
This study focuses on developing and validating a high-fidelity finite element model for predicting damage evolution and residual strength in fiber-reinforced composite panels. Impact and compression after impact (CAI) tests were conducted at both barely visible impact damage (BVID) and clearly visible impact damage (CVID) levels. The ASTM D7137 standard 100 mm × 150 mm CAI coupons were inadequate to cover the range of experimental studies required for model validation. Therefore, larger 254 mm × 304.8 mm laminates were investigated under two CAI testing conditions: one a scaled-up version of ASTM standard coupon, and the other with additional anti-buckling support plates to reduce unsupported areas to 127 mm × 177.8 mm. The model captured inter- and intra-laminar failure modes, including fiber breakage, splitting, kinking, pull-out, and crushing as well as matrix cracking, delamination, and their interactions. This was achieved by cohesive zone modeling technique and enhancing the LaRC05 failure criteria through modeling the fiber damage evolution and utilizing an efficient search algorithm to determine the matrix fracture plane and fiber kink band angle. This study underscores the efficacy of the high-fidelity modeling approach in accurately predicting both impact damage and CAI strength in typical aircraft impact damage scenarios. Additionally, it provides insights into complex CAI failure mechanisms and energy release associated with various damage modes and highlights the effect of global buckling on the failure behavior and compressive strength of composite laminates. Furthermore, it shows that the proposed fixture with support plates is suitable for testing a broader range of impact scenarios without experiencing global buckling.
更多
查看译文
关键词
Composite laminates,Low-velocity impact,Compression after impact,Finite element analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要