Sodium lignosulfonate/graphene composites for efficient desalination by incorporating CoS to control pore size

International Journal of Biological Macromolecules(2024)

引用 0|浏览4
暂无评分
摘要
The phenomenon of overlapping double layers due to micropores inhibits capacitive deionization performance, which is improved by increasing the pore size. In this study, a novel ternary composite electrode (sodium lignosulfonate/reduced graphene oxide/cobalt sulfide, LGC) was designed using a two-step hydrothermal method. CoS with high pseudocapacitance modifies sodium lignosulfonate and graphene connected by hydrogen bonding, benefiting from the constitutive steric structure. The electrochemical performance was significantly enhanced, and the desalination capacity substantially improved. The LGC electrode specific capacitance was as high as 354.47 F g−1 at a 1 A g−1 current density. The desalination capacity of the capacitive deionization device comprising LGC and activated carbon in 1 M NaCl electrolyte reached 28.04 mg g−1 at an operating condition of 1.2 V, 7 mL min−1. Additionally, the LGC electrodes degraded naturally post the experiment by simply removing the CoS, suggesting that the LGC composites are promising material for capacitive deionization electrodes.
更多
查看译文
关键词
Sodium lignosulfonate,Graphene,Capacitive deionization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要