The Effect of Bi0.5Li0.5ZrO3-SrSnO3 Composite Doping on the Construction of Polymorphic Phase Boundaries and Enhanced Electrical Properties of K0.45Na0.55Nb0.965Sb0.035O3 Piezoelectric Ceramics

Ruihua Zheng,Qiyi Yin, Fei Lin,Yulin Zhang, Quanzheng Zhang,Kunhong Hu, Kejie Yang, Yangyang Zhu, Wangzu Zou

ECS Journal of Solid State Science and Technology(2024)

引用 0|浏览0
暂无评分
摘要
In this experiment, a new lead-free piezoelectric ceramics (1−x)K0.45Na0.55Nb0.965Sb0.035O3−x(0.9Bi0.5Li0.5ZrO3−0.1SrSnO3) were prepared by the conventional solid-phase method, and the effects of the doping amount of 0.9Bi0.5Li0.5ZrO3−0.1SrSnO3 on the K0.45Na0.55Nb0.965Sb0.035O3 ceramics on the crystal structure, microstructure, microscopic structure and electrical properties. All the doping ions entered the KNN lattice and formed a dense solid solution with a single-phase structure, and the phase structure of the ceramics coexisted from orthorhombic (O) to orthorhombic-tetragonal (O-T) phases in the range of 0 ≤ x ≤ 0.03, and transitioned to rhombohedral-tetragonal (R-T) phase coexistence when 0.035 ≤ x ≤ 0.05. The electrical properties of the ceramics were analyzed and the polymorphic phase boundary (PPB) region was obtained at x = 0.035 and had the best overall properties: d 33 = 324pC/N, k p = 49%, ε r = 1479, tanδ = 3.21%, P r = 31.98 μC/cm2, E c = 16.83 kV cm−1 and T C = 293°C. By The microstructural analysis of the ceramics showed that the appropriate amount of compound doping of the second element enhances the denseness of the ceramics as well as makes the grains uniformly distributed. These results indicate that the ceramics of this system have great prospects for future applications in the field of lead-free piezoelectric ceramics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要