Saturated Trajectory Tracking Controller in the Body-Frame for Quadrotors

DRONES(2024)

引用 0|浏览0
暂无评分
摘要
This paper introduces a quadrotor trajectory tracking controller comprising a steady-state optimal position controller with a normed input saturation and modular integrative action coupled with a backstepping attitude controller. First, the translational and rotational dynamical models are designed in the body-fixed frame to avoid external rotations and are partitioned into an underactuated position system and a quaternion-based attitude system. Secondly, a controller is designed separately for each subsystem, namely, (i) the position controller synthesis is derived from the Maximum Principle, Lyapunov, and linear quadratic regulator (LQR) theory, ensuring the global exponential stability and steady-state optimality of the controller within the linear region, and global asymptotic stability is guaranteed for the saturation region when coupled with any local exponential stable attitude controller, and (ii) the attitude system, with the quaternion angles and the angular velocity as the controlled variables, is designed in the error space through the backstepping technique, which renders the overall system, position, and attitude, with desirable closed-loop properties that are almost global. The overall stability of the system is achieved through the propagation of the position interconnection term to the attitude system. To enhance the robustness of the tracking system, integrative action is devised for both position and attitude, with emphasis on the modular approach for the integrative action on the position controller. The proposed method is experimentally validated on board an off-the-shelf quadrotor to assess the resulting performance.
更多
查看译文
关键词
quadrotor,stability of nonlinear systems,bounded control,optimal control,robustness
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要