Effect of defect-healing treatment on layered silicate precursors toward well-defined crosslinked frameworks

Yoshiaki Ito,Keiichiro Nayuki, Yukichi Sasaki,Toru Wakihara, Tatsuya Okubo,Kenta Iyoki

RSC ADVANCES(2024)

引用 0|浏览0
暂无评分
摘要
The synthesis of zeolites from two-dimensional layered precursors through interlayer crosslinking of the layers is a promising avenue for realizing meticulously designed synthesis routes. However, the presence of defective silanol species in the precursors hinders the achievement of desirable synthesis outcomes. This study focuses on PREFER-a layered precursor for FER-type zeolites-which was synthesized and subjected to a liquid-mediated defect-healing treatment that we recently developed. The defect-healing process involves the use of fluoride compounds for reconstruction and organic pore fillers to stabilize the framework. The effects of the treatment on the structure, composition, and iron insertion behavior of PREFER were examined. Characterization results revealed a reduction in the number of intralayer silanol defects, whereas interlayer silanols were unaffected by the defect-healing treatment. Furthermore, the subsequent alterations observed in the crosslinking behavior with iron atoms indicated that the defect-healing treatment may enhance the insertion of iron species between the layers in more homogeneous environments compared with the untreated precursor. These findings provide valuable insights into the prospects of controlled interlayer linkage in two-dimensional zeolite materials. A defect-healed layered precursor of FER-type zeolite exhibited enhanced iron atom insertion in more homogeneous environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要