Polyethylene Glycol/Rice Husk Ash Shape-Stabilized Phase Change Materials: Recovery of Thermal Energy Storage Efficacy via Engineering Porous Support Structure.

Giang Tien Nguyen, Bui Van Phuoc, Tran Thi Nhung, Le Thi Duy Hanh,Huynh Nguyen Anh Tuan,Ly Tan Nhiem

ACS omega(2024)

引用 0|浏览0
暂无评分
摘要
This study focuses on modifying the porous structure of acid-treated rice husk ash (ARHA) to enhance the thermal energy storage capacity of poly(ethylene glycol) (PEG) confined within shape-stabilized phase change materials. The modification process involved a cost-effective sol-gel method in which ARHA was initially dissolved in an alkaline solution and subsequently precipitated in an acidic environment. ARHA, being a mesoporous SiO2-based material with a high surface area but low pore volume, had limited capacity to adsorb PEG (50%). Furthermore, it hindered the crystallinity of impregnated PEG by fostering abundant interfacial hydrogen bonds (H-bonds), resulting in a diminished thermal energy storage efficiency. Following modification of the porous structure, the resulting material, termed mARHA, featured a three-dimensional macroporous network, providing ample space to stabilize a significant amount of PEG (70%) without any leakage. Notably, mARHA, with a reduced surface area, effectively mitigated interfacial H-bonds, consequently enhancing the crystallinity of impregnated PEG. This modification led to the recovery of thermal energy storage efficacy from 0 J/g for PEG/ARHA to 109.3 J/g for PEG/mARHA. Additionally, the PEG/mARHA composite displayed improved thermal conductivity, reliable thermal performance, and effective thermal management when used as construction materials. This work introduces a straightforward and economical strategy for revitalizing thermal energy storage in PEG composites confined within RHA-based porous supports, offering promising prospects for large-scale applications in building energy conservation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要