A General Nucleation Model For Semiconductor Nanocrystals

crossref(2024)

引用 0|浏览1
暂无评分
摘要
We introduce a non-classical model for nanocrystal nucleation in solution which centers on the dynamic interplay of chemical bond breakage and formation, coupled with the desolvation of precursor molecules. Departing from classical theory, our model employs the bond count as the key variable rather than particle size, thereby redefining the role of supersaturation and its role in determining the so-called critical nucleus size. We apply the model to CdSe nanocrystal formation in non-polar solvents and showcase its efficacy in predicting solvent dynamics, precursor characteristics, crystal phase, stoichiometry," magic number" behavior, and transition states. While the coupled-cluster method is used to determine the bond energy, we show that it is possible to derive reaction pathways by reducing the calculations to algebraic approximations for the nucleation energy. This singular set of bond energy parameters allows nanocrystal nucleation and growth to be conceptualized as a straightforward chemical reaction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要