Incorporation of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> in Poly (Methyl Methacrylate) Matrices for Non-Volatile Memory Applications

Jurnal Kejuruteraan(2024)

引用 0|浏览3
暂无评分
摘要
MXenes, with their unique surface properties and 2D structure, have demonstrated promising potential in electronic devices, particularly in memory storage. This study explored the potential of 2D Ti3C2Tx for the nonvolatile memory (NVM) application. The simple solution process routes were used to fabricate the two-terminal bistable switching devices. The silver nanowires/nanocomposite/ITO structure was deposited on a glass substrate using spin coating and spray coating techniques. The Ti3C2Tx MXene flakes were incorporated into a poly(methyl methacrylate) (PMMA) polymer host to form the nanocomposite and act as a charge-trapping layer. Meanwhile, PMMA acts as a dielectric layer. The measured current-voltage data showed a bistable current behavior with the presence of a memory window. The fabricated NVM memory devices were reprogrammable when the endurance test was performed and stable up to 1×104 s cycles with a distinct ON/OFF ratio of 103. The conduction mechanisms were identified using the curve-fitting method with double log plots of current-voltage (I-V) data. Based on the obtained I-V characteristics, various conduction mechanisms, especially Schottky and Poole-Frenkel emission, trapped charge limiting current, and space charge limited current, were proposed to be responsible for the bistable switching behavior. Thus, the results of this study provide an experimental basis for using MXene in non-volatile memory applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要