rLSTM-AE for dimension reduction and its application to active learning-based dynamic reliability analysis

Mechanical Systems and Signal Processing(2024)

引用 0|浏览2
暂无评分
摘要
A novel method termed rLSTM-AE is developed for the low-dimensional latent space identification of the stochastic dynamic systems with more than 1000 input random variables and the active learning-based dynamic reliability analysis. First, the long short-term memory network considers both the time-variant stochastic excitation and the time-invariant random variables is developed (rLSTM), which adopts the time-series excitation as the pertinent input feature and makes it available for the metamodeling of the high-dimensional stochastic dynamic systems. To circumvent the insufficient accuracy of deep neural networks for reliability analysis results from the limited observations, autoencoder (AE) is incorporated with the rLSTM (rLSTM-AE) and utilized to decompose the approximate extreme value space found by rLSTM onto a low-dimensional latent space. The dimension of the latent space is adaptively determined by a Gaussian process regression reconstruction error, which enables the Gaussian process regression with the similar accuracy as rLSTM regarding the extreme responses prediction. The proposed rLSTM-AE conducts the low-dimensional features extraction from the perspective of the output space decomposition and considers the time-dependent property of the dynamic systems. Finally, the detected latent variables can be combined with the active learning-based Gaussian process regression for the high-dimensional dynamic reliability analysis. One single-degree-of-freedom system and a reinforced concrete frame structure subjected to the stochastic excitation are investigated to validate the performance of the proposed method.
更多
查看译文
关键词
High dimension,Stochastic dynamic system,Metamodel,Latent space,Reliability analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要