MixLoRA: Enhancing Large Language Models Fine-Tuning with LoRA-based Mixture of Experts

Dengchun Li, Yingzi Ma, Naizheng Wang, Zhengmao Ye,Zhiyuan Cheng, Yinghao Tang, Yan Zhang,Lei Duan,Jie Zuo, Cal Yang, Mingjie Tang

arxiv(2024)

引用 0|浏览4
暂无评分
摘要
Fine-tuning Large Language Models (LLMs) is a common practice to adapt pre-trained models for specific applications. While methods like LoRA have effectively addressed GPU memory constraints during fine-tuning, their performance often falls short, especially in multi-task scenarios. In contrast, Mixture-of-Expert (MoE) models, such as Mixtral 8x7B, demonstrate remarkable performance in multi-task learning scenarios while maintaining a reduced parameter count. However, the resource requirements of these MoEs remain challenging, particularly for consumer-grade GPUs with less than 24GB memory. To tackle these challenges, we propose MixLoRA, an approach to construct a resource-efficient sparse MoE model based on LoRA. MixLoRA inserts multiple LoRA-based experts within the feed-forward network block of a frozen pre-trained dense model and employs a commonly used top-k router. Unlike other LoRA-based MoE methods, MixLoRA enhances model performance by utilizing independent attention-layer LoRA adapters. Additionally, an auxiliary load balance loss is employed to address the imbalance problem of the router. Our evaluations show that MixLoRA improves about 9 state-of-the-art PEFT methods in multi-task learning scenarios. We also propose a new high-throughput framework to alleviate the computation and memory bottlenecks during the training and inference of MOE models. This framework reduces GPU memory consumption by 40 during both training and inference.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要