Electronic and optical properties of doped monolayer MoS2 under shear deformation

Surface Science(2024)

引用 0|浏览0
暂无评分
摘要
The effect of O-atom doping on the electronic and optical properties of monolayer MoS2 under shear deformation has been systematically investigated using first principles. The results show that shear deformation reduces the structural stability of the doped system. The forbidden band width of the doped system decreases sequentially with increasing shear deformation, while conductivity increases. The density of states of both intrinsic and doped systems is primarily contributed by the 4d and 3p orbitals of the Mo and S atoms, respectively. Analysis of the optical properties reveals that shear deformation enhances the static permittivity of the doped systems, leading to an increased ability to bind charges. Additionally, absorption and reflection peaks of all doped systems occur in the ultraviolet region. Compared to the doped system without shear deformation, absorption peaks of the remaining doped systems shift towards the high energy region, resulting in enhanced utilization of ultraviolet light. In the energy range of 16.7-17.3 eV, peak energy loss of all doped systems decreases sequentially, suggesting that shear deformation can reduce energy loss. These results demonstrate that shear deformation can modulate the optoelectronic properties of O-doped monolayer MoS2 and provide a theoretical foundation for practical applications in semiconductor devices.
更多
查看译文
关键词
Monolayer MoS2,Deformation,Electronic properties,Optical properties
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要