Cation effects in hydrogen evolution and CO2-to-CO conversion: A critical perspective

Yu-Shen Hsu, Sachinthya T. Rathnayake,Matthias M. Waegele

JOURNAL OF CHEMICAL PHYSICS(2024)

引用 0|浏览0
暂无评分
摘要
The rates of many electrocatalytic reactions can be strongly affected by the structure and dynamics of the electrochemical double layer, which in turn can be tuned by the concentration and identity of the supporting electrolyte's cation. The effect of cations on an electrocatalytic process depends on a complex interplay between electrolyte components, electrode material and surface structure, applied electrode potential, and reaction intermediates. Although cation effects remain insufficiently understood, the principal mechanisms underlying cation-dependent reactivity and selectivity are beginning to emerge. In this Perspective, we summarize and critically examine recent advances in this area in the context of the hydrogen evolution reaction (HER) and CO2-to-CO conversion, which are among the most intensively studied and promising electrocatalytic reactions for the sustainable production of commodity chemicals and fuels. Improving the kinetics of the HER in base and enabling energetically efficient and selective CO2 reduction at low pH are key challenges in electrocatalysis. The physical insights from the recent literature illustrate how cation effects can be utilized to help achieve these goals and to steer other electrocatalytic processes of technological relevance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要