Channel Performance Metrics and Evaluation for XR Head-Mounted Displays with mmWave Arrays

IEEE Transactions on Communications(2024)

引用 0|浏览3
暂无评分
摘要
Millimeter-wave (mmWave) technology holds the potential to revolutionize head-mounted displays (HMDs) by enabling high-speed wireless communication with nearby processing nodes, where complex video rendering can take place. However, the sparse angular profile of mmWave channels, coupled with the narrow field of view (FoV) of patch-antenna arrays and frequent HMD rotation, can lead to poor performance. We introduce six channel performance metrics to evaluate the performance of an HMD equipped with mmWave arrays. We analyze the metrics using analytical models, discuss their impact for the application, and apply them to 28 GHz channel sounding data, collected in a conference room using eight HMD patch-antenna arrays, offset by 45° from each other in azimuth. Our findings confirm that a single array performs poorly due to the narrow FoV, and featuring multiple arrays along the HMD’s azimuth is required. Namely, the broader FoV stabilizes channel gain during HMD rotation, lessens the attenuation caused by line of sight (LoS) obstruction, and increases the channel’s spatial multiplexing capability. In light of our findings, we conclude that it is imperative to either equip the HMD with multiple arrays or, as an alternative approach, incorporate macroscopic diversity by leveraging distributed access point (AP) infrastructure.
更多
查看译文
关键词
Extended reality,wireless,millimeter-wave,antenna configuration,channel measurements
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要