Cell-free assays reveal the HIV-1 capsid protects reverse transcripts from cGAS

Tiana M. Scott, Lydia M. Arnold, Jordan A. Powers, Delaney A. McCann, Devin E. Christensen, Miguel J. Pereira,Wen Zhou, Rachel M. Torrez,Janet H. Iwasa,Philip J. Kranzusch, Wesley I. Sundquist,Jarrod S. Johnson

biorxiv(2024)

引用 0|浏览1
暂无评分
摘要
Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system. We found that wild-type HIV-1 capsids protect their genomes from cGAS even after completion of reverse transcription. Viral DNA could be deprotected by thermal stress, capsid mutations, or reduced concentrations of inositol hexakisphosphate (IP6) that destabilize the capsid. Strikingly, capsid inhibitors also disrupted viral cores and dramatically potentiated cGAS activity, both in vitro and in cellular infections. Our results provide biochemical evidence that the HIV-1 capsid lattice conceals the genome from cGAS and that chemical or physical disruption of the viral core can expose HIV-1 DNA and activate innate immune signaling. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要