Harnessing overlapped temperature-salinity gradient in solar-driven interfacial seawater evaporation for efficient steam and electricity generation

Peida Li, Dongtong He,Jingchang Sun,Jieshan Qiu,Zhiyu Wang

Journal of Energy Chemistry(2024)

引用 0|浏览0
暂无评分
摘要
Solar-driven interfacial water evaporation (SIWE) offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination. It also engenders overlapped temperature-salinity gradient (TSG) between water-air interface and adjacent seawater, affording opportunities of harnessing electricity. However, the efficiency of conventional SIWE technologies is limited by significant challenges, including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously. Herein, we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG. It enables spontaneous circulation of salt flux upon seawater evaporation, inducing a self-cleaning evaporative interface without salt passivation for stable steam generation. Meanwhile, this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation. These benefits render a remarkable efficiency of 90.8% in solar energy utilization, manifesting in co-generation of solar steam at a fast rate of 2.01 kg m−2 h−1 and electricity power of 1.91 W m−2 with high voltage. Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply. It produces hydrogen at a rapid rate of 1.29 L h−1 m−2 and freshwater with 22 times lower Na+ concentration than the World Health Organization (WHO) threshold.
更多
查看译文
关键词
Solar-driven interfacial water evaporation,Steam generation,Electricity generation,Seawater
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要