On the Role of Physical Processes in Controlling Equatorial Plasma Bubble Morphology

crossref(2024)

引用 0|浏览0
暂无评分
摘要
In this study, we present the results of an analysis of the morphological features of Equatorial Plasma Bubbles (EPBs) over South America. In this context, we analyzed data from the Disturbance Ionosphere indeX (DIX) maps calculated using around 450 Global Navigation Satellite System (GNSS) stations. To mitigate the influence of magnetic disturbances on bubble development, only data from geomagnetically quiet days were utilized. This study covered the period from the post-peak of solar cycle 24 (2015) to the pre-peak of solar cycle 25 (2023), totaling 1321 nights with EPB occurrences, representing the largest dataset of EPBs ever compiled for South America. Our analysis unveiled several key findings regarding EPBs and their behavior over the South American region. Firstly, we observed that the amplitude of plasma depletions and the EPB latitudinal development follow an approximately 11-year cycle driven by solar radiation levels. Furthermore, our analysis highlights the significant influence of factors such as vertical plasma drift velocity during the pre-reversal enhancement (PRE), longitudinal variations associated with magnetic declination, as well as the saturation behavior of EPB development with extreme solar flux. Finally, we outline an empirical model to calculate the maximum latitudinal extent of EPBs based on solar flux and magnetic declination as an attempt to provide insights for anticipating EPB behavior across different solar cycle stages and in different longitude sectors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要