Understanding Flexdispersion: Structure–Function Relationship Studies of Organic Amphiphilic Ligands

Tatsuya Sudo, Masahiko Sagawa,Sota Adachi, Yusuke Kato, Yuki Nakanishi, Tatsuya Nakamura,Shohei Yamashita,Hidehiro Kamiya,Yohei Okada

Chemistry – A European Journal(2024)

引用 0|浏览0
暂无评分
摘要
Since inorganic nanoparticles have unique properties that differ from bulk materials, their material applications have attracted attention in various fields. In order to utilize inorganic nanoparticles for functional materials, they must be dispersed without agglomeration. Therefore, the surfaces of inorganic nanoparticles are typically modified with organic ligands to improve their dispersibility. Nevertheless, the relationship between the tail group structure in organic ligands and the dispersibility of inorganic nanoparticles in organic solvents remains poorly understood. We previously developed amphiphilic ligands that consist of ethylene glycol chains and alkyl chains to disperse inorganic nanoparticles in a variety of organic solvents. However, the structural requirements for amphiphilic ligands to “flexibly” disperse nanoparticles in less polar to polar solvents are still unclear. Here, we designed and synthesized several phosphonic acid ligands for structure‒function relationship studies of flexdispersion. Dynamic light scattering analysis and visible light transmittance measurements revealed that the ratio of alkyl/ethylene glycol chains in organic ligands alone does not determine the dispersibility of the nanoparticles in organic solvents, but the arrangement of the individual chains also has an effect. From a practical application standpoint, it is preferable to design ligands with ethylene glycol chains on the outside relative to the particle surface.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要