Functional Differentiation of the Succinate Dehydrogenase Subunit SdhC Governs the Sensitivity to SDHI Fungicides, ROS Homeostasis, and Pathogenicity in Fusarium asiaticum.

Journal of agricultural and food chemistry(2024)

引用 0|浏览4
暂无评分
摘要
Succinate dehydrogenase (SDH) is an integral component of the tricarboxylic acid cycle (TCA) and respiratory electron transport chain (ETC), targeted by succinate dehydrogenase inhibitors (SDHIs). Fusarium asiaticum is a prominent phytopathogen causing Fusarium head blight (FHB) on wheat. Here, we characterized the functions of the FaSdhA, FaSdhB, FaSdhC1, FaSdhC2, and FaSdhD subunits. Deletion of FaSdhA, FaSdhB, or FaSdhD resulted in significant growth defects in F. asiaticum. The FaSdhC1 or FaSdhC2 deletion mutants exhibited substantial reductions in fungal growth, conidiation, virulence, and reactive oxygen species (ROS). The FaSdhC1 expression was significantly induced by pydiflumetofen (PYD). The ΔFaSdhC1 mutant displayed hypersensitivity to SDHIs, whereas the ΔFaSdhC2 mutant exhibited resistance against most SDHIs. The transmembrane domains of FaSdhC1 are essential for regulating mycelial growth, virulence, and sensitivity to SDHIs. These findings provided valuable insights into how the two SdhC paralogues regulated the functional integrity of SDH, ROS homeostasis, and the sensitivity to SDHIs in phytopathogenic fungi.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要