Sol-Gel Multilayered Niobium (Vanadium)-Doped TiO2 for CO Sensing and Photocatalytic Degradation of Methylene Blue

Materials(2024)

引用 0|浏览0
暂无评分
摘要
Multilayered TiO2 films doped either with Niobium or Vanadium (1.2 at. %) were deposited by the sol-gel dip coating method on c-Si and glass substrates. The films on glass substrates were tested for CO sensing and photocatalytic degradation of methylene blue. X-ray diffraction data analysis showed that all the TiO2:Nb(V) films were nanocrystalline in the anatase phase, with a uniform and compact microstructure and a homogeneous superficial structure of small grains with diameters in the range of 13–19 nm. For the electrical characterization, the TiO2:Nb(V) films were incorporated in Metal-Insulator-Semiconductor (MIS) structures. The specific resistivity is of the order of 104 Ωcm and its value decreases with increasing the electrical field, which testifies to the injection of electrons into these layers. From the analysis of the current–voltage curves taken at different temperature- and frequency—dependent capacitance–voltage and conductance–voltage characteristics, the density and parameters of deep levels in these TiO2 films are evaluated and the electron charge transport mechanism is established. It was shown that the current in these TiO2:Nb(V)-Si MIS structures is mainly carried out by inter-trap tunneling via deep levels energetically distributed in the TiO2 bandgap. Testing these sol-gel TiO2:Nb(V) layers for gas sensing and photocatalytic capabilities proved that they could serve such purposes. In particular, the results of the V-doped sol-gel TiO2 film confirm its CO detection capability, which is rarely reported in the literature. For the photodegradation of methylene blue, the Nb-doped TiO2 samples were superior, with nearly double the photocatalytic efficiency of undoped TiO2.
更多
查看译文
关键词
titanium dioxide,Nb(V) doping,sol-gel TiO<sub>2</sub> structure,electrical properties,CO sensing,photocatalytic methylene blue degradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要