Design and analysis of a fiber Bragg grating-based foot pressure assessment system

JOURNAL OF BIOPHOTONICS(2024)

引用 0|浏览4
暂无评分
摘要
This research presents a comprehensive study focused on the design, implementation, and analysis of an innovative fiber Bragg grating (FBG) based foot pressure assessment system. FBG sensors strategically placed on the great toe, metatarsal 1, metatarsal 2, and heel provided distinct peak resonant wavelengths, strains, and pressures during experimental cycles. Participant 1 exhibited peak resonant wavelength of 1537.745 nm for great toe, 1537.792 nm for metatarsal 1, 1537.812 nm for metatarsal 2, and 1537.824 nm for heel. Participant 2 showcased distinct graphical representations with peak resonant wavelengths ranging from 1537.903 to 1537.917 nm. In a fracture patient condition, the FBG-based system monitored weight-bearing capacity, integrated with real-time X-ray imaging for dynamic insights of rehabilitation as distinct approach. The strains and pressures at each position exhibited notable variations along with the sensitivity of 1.31 mu epsilon obtained across all positions, underscoring the FBG-based system's reliability in capturing subtle foot pressure. A foot pressure assessment system utilizing Fiber Bragg Grating (FBG) sensors is depicted. FBG sensors embedded in a shoe sole measuring pressure distribution in different parts of the foot. Real-time data acquisition enables accurate analysis of foot dynamics, aiding in biomechanical studies and clinical diagnostics. image
更多
查看译文
关键词
FBG sensor,foot pressure,fracture,heel,interrogator,metatarsal,sensitivity,toe
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要