Effect of Polymorphism on the Sorption Properties of a Flexible Square-Lattice Topology Coordination Network.

ACS applied materials & interfaces(2024)

引用 0|浏览3
暂无评分
摘要
The stimulus-responsive behavior of coordination networks (CNs), which switch between closed (nonporous) and open (porous) phases, is of interest because of its potential utility in gas storage and separation. Herein, we report two polymorphs of a new square-lattice (sql) topology CN, X-sql-1-Cu, of formula [Cu(Imibz)2]n (HImibz = {[4-(1H-imidazol-1-yl)phenylimino]methyl}benzoic acid), isolated from the as-synthesized CN X-sql-1-Cu-(MeOH)2·2MeOH, which subsequently transformed to a narrow pore solvate, X-sql-1-Cu-A·MeOH, upon mild activation (drying in air or heating at 333 K under nitrogen). X-sql-1-Cu-A·MeOH contains MeOH in cavities, which was removed through exposure to vacuum for 2 h, yielding the nonporous (closed) phase X-sql-1-Cu-A. In contrast, a more dense polymorph, X-sql-1-Cu-B, was obtained by exposing X-sql-1-Cu-(MeOH)2·2MeOH directly to vacuum for 2 h. Gas sorption studies conducted on X-sql-1-Cu-A and X-sql-1-Cu-B revealed different switching behaviors to two open phases (X-sql-1-Cu·CO2 and X-sql-1-Cu·C2H2), with different gate-opening threshold pressures for CO2 at 195 K and C2H2 at 278 K. Coincident CO2 sorption and in situ powder X-ray diffraction studies at 195 K revealed that X-sql-1-Cu-A transformed to X-sql-1-Cu-B after the first sorption cycle and that the CO2-induced switching transformation was thereafter reversible. The results presented herein provide insights into the relationship between two polymorphs of a CN and the effect of polymorphism upon gas sorption properties. To the best of our knowledge, whereas sql networks such as X-sql-1-Cu are widely studied in terms of their structural and sorption properties, this study represents only the second example of an in-depth study of the sorption properties of polymorphic sql networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要