Comparing different boost concepts and beam configurations for proton therapy of pancreatic cancer

Physics and Imaging in Radiation Oncology(2024)

引用 0|浏览2
暂无评分
摘要
Background and Purpose Interfractional dose variations have an impact on accuracy of proton therapy for pancreatic cancer. This study investigated field-in-field (FIF) and simultaneous integrated boost (SIB) concepts for scanned proton therapy treatment with different beam configurations. Materials and Methods Robustly optimized treatment plans for fifteen patients were generated using FIF and SIB techniques with two, three, and four beams. The prescribed dose in 20 fractions was 60 Gy(RBE) for the internal gross tumor volume (IGTV) and 46 Gy(RBE) for the internal clinical target volume. Verification computed tomography (vCT) scans was performed on treatment days 1, 7, and 16. Initial treatment plans were recalculated on the rigidly registered vCTs. V100% and D95% for targets and D2cm3 for the stomach and duodenum were evaluated. Robustness evaluations (range uncertainty of 3.5 %) were performed to evaluate the stomach and duodenum dose-volume parameters. Results For all techniques, IGTV V100% and D95% decreased significantly when recalculating the dose on vCTs (p < 0.001). The median IGTV V100% and D95% over all vCTs was ranged from 74.2 % to 90.2 % and 58.8 Gy(RBE) to 59.4 Gy(RBE), respectively. The FIF with two and three beams, and SIB with two beams maintained the highest IGTV V100% and D95%. In robustness evaluations, the ΔD2cm3 of stomach was highest in two beams plans, while the ΔD2cm3 of duodenum was highest in four beams plans, for both concepts. Conclusion Target coverage decreased when recalculating on CTs at different time for both concepts. The FIF with three beams maintained the highest IGTV coverage while sparing normal organs the most.
更多
查看译文
关键词
Pancreatic cancer,Proton therapy,Pencil-beam scanning,Field-in-field,Simultaneous integrated boost
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要