Interpolation of Microbiome Composition in Longitudinal Datasets

biorxiv(2024)

引用 0|浏览0
暂无评分
摘要
The human gut microbiome significantly impacts health, prompting a rise in longitudinal studies that capture microbiome samples at multiple time points. Such studies allow researchers to characterize microbiome changes over time, but importantly, also present major analytical challenges due to incomplete or irregular sampling. To address this challenge, longitudinal microbiome studies often employ various interpolation methods, aiming to infer missing microbiome data. However, to date, a comprehensive assessment of such microbiome interpolation techniques, as well as best practice guidelines for interpolating microbiome data, are still lacking. This work aims to fill this gap, rigorously implementing and systematically evaluating a large array of interpolation methods, spanning several different categories, for longitudinal microbiome interpolation. To assess each method and its ability to accurately infer microbiome composition at missing time points, we used three longitudinal microbiome datasets that follow individuals over a long period of time, and a leave-one-out approach. Overall, our analysis demonstrated that the K-nearest neighbors algorithm consistently outperforms other methods in interpolation accuracy, yet, accuracy varied widely across datasets, individuals, and time. Factors such as microbiome stability, sample size, and the time gap between interpolated and adjacent samples significantly influenced accuracy, allowing us to develop a model for predicting the expected interpolation accuracy at a missing time point. Our findings, combined, suggest that accurate interpolation in longitudinal microbiome data is feasible, especially in dense cohorts. Furthermore, using our predictive model, future studies can interpolate data only in time points where the expected interpolation accuracy is high.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要