谷歌浏览器插件
订阅小程序
在清言上使用

Collimated muon beam proposal for probing neutrino charge-parity violation

COMMUNICATIONS PHYSICS(2024)

引用 0|浏览31
暂无评分
摘要
The phenomenon of neutrino oscillation is of great theoretical and experimental interest for our understand of the nature of the neutrino and its implication for physics beyond the standard Model. Currently available neutrino oscillation experiments can already constrain neutrino mixing parameters with a confidence level up to 3 standard deviations (sigma). However, it remains challenging to provide a deterministic constraint on the Charge-Parity (CP) violation phase of the neutrino mixing matrix. Here, we propose an experimental setup that exploits collimated muon beams to probe neutrino CP-violation. In our proposed acceleration experiment, a 45 GeV positron source with additional muon collimation, interfaces with near-future neutrino detectors like DUNE and T2K, to probe neutrino CP-violation phase with a significantly higher sensitivity than obtained with the neutrino detectors alone, and to determine tau neutrino properties. Simulations estimate the collection of 104 tau (anti-) neutrino in 5 years, and a sensitivity of over 7 standard deviations for delta CP = divided by pi/2 divided by in 5 years. Collecting nu tau appearance events from mu - and mu + beams over 10 years can attain a 3-4 standard deviation sensitivity. This proposal may serve as a tau factory. Energetic neutrino beams from symmetric muon and anti-muon decays are used to study long-baseline neutrino oscillation, and constrain the Charge-Parity (CP) violation phase in the three-flavour neutrino mixing. Here, the authors provide results based on neutrino oscillation simulations to show that more than five standard deviation sensitivity on CP violation can be obtained from 5-10 years of data taken with the help of DUNE-like detectors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要