谷歌浏览器插件
订阅小程序
在清言上使用

An Early Investigation of the HHL Quantum Linear Solver for Scientific Applications

arxiv(2024)

引用 0|浏览13
暂无评分
摘要
In this paper, we explore using the Harrow-Hassidim-Lloyd (HHL) algorithm to address scientific and engineering problems through quantum computing utilizing the NWQSim simulation package on high-performance computing. Focusing on domains such as power-grid management and heat transfer problems, we demonstrate the correlations of the precision of quantum phase estimation, along with various properties of coefficient matrices, on the final solution and quantum resource cost in iterative and non-iterative numerical methods such as Newton-Raphson method and finite difference method, as well as their impacts on quantum error correction costs using Microsoft Azure Quantum resource estimator. We conclude the exponential resource cost from quantum phase estimation before and after quantum error correction and illustrate a potential way to reduce the demands on physical qubits. This work lays down a preliminary step for future investigations, urging a closer examination of quantum algorithms' scalability and efficiency in domain applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要