Revealing the working mechanism of quantum neural networks by mutual information

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Quantum neural networks (QNNs) is a parameterized quantum circuit model, which can be trained by gradient-based optimizer, can be used for supervised learning, regression tasks, combinatorial optimization, etc. Although many works have demonstrated that QNNs have better learnability, generalizability, etc. compared to classical neural networks. However, as with classical neural networks, we still can't explain their working mechanism well. In this paper, we reveal the training mechanism of QNNs by mutual information. Unlike traditional mutual information in neural networks, due to quantum computing remains information conserved, the mutual information is trivial of the input and output of U operator. In our work, in order to observe the change of mutual information during training, we divide the quantum circuit (U operator) into two subsystems, discard subsystem (D) and measurement subsystem (M) respectively. We calculate two mutual information, I(Di : Mo) and I(Mi : Mo) (i and o means input or output of the corresponding subsystem), and observe their behavior during training. As the epochs increases, I(Di : Mo) gradually increases, this may means some information of discard subsystem is continuously pushed into the measurement subsystem, the information should be label-related. What's more, I(Mi : Mo) exist two-phase behavior in training process, this consistent with the information bottleneck anticipation. The first phase, I(Mi : Mo) is increasing, this means the measurement subsystem perform feature fitting. The second phase, I(Mi : Mo) is decreasing, this may means the system is generalizing, the measurement subsystem discard label-irrelevant information into the discard subsystem as many as possible. Our work discussed the working mechanism of QNNs by mutual information, further, it can be used to analyze the accuracy and generalization of QNNs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要