谷歌浏览器插件
订阅小程序
在清言上使用

3D-Printed Proangiogenic Patches of Photo-Crosslinked Gelatin and Polyurethane Hydrogels Laden with Vascular Cells for Treating Vascular Ischemic Diseases

BIOMATERIALS(2024)

引用 0|浏览18
暂无评分
摘要
Engineering vascularized tissues remains a promising approach for treating ischemic cardiovascular diseases. The availability of 3D-bioprinted vascular grafts that induce therapeutic angiogenesis can help avoid necrosis and excision of ischemic tissues. Here, using a combination of living cells and biodegradable hydrogels, we fabricated 3D-printed biocompatible proangiogenic patches from endothelial cell-laden photo-crosslinked gelatin (EC-PCG) bioink and smooth muscle cell-encapsulated polyurethane (SMC-PU) bioink. Implantation of 3D-bioprinted proangiogenic patches in a mouse model showed that EC-PCG served as an angiogenic capillary bed, whereas patterned SMC-PU increased the density of microvessels. Moreover, the assembled patterns between EC-PCG and SMC-PU induced the geometrically guided generation of microvessels with blood perfusion. In a rodent model of hindlimb ischemia, the vascular patches rescued blood flow to distal tissues, prevented toe/foot necrosis, promoted muscle remodeling, and increased the capillary density, thereby improving the heat-escape behavior of ischemic animals. Thus, our 3D-printed vascular cell-laden bioinks constitute efficient and scalable biomaterials that facilitate the engineering of vascular patches capable of directing therapeutic angiogenesis for treating ischemic vascular diseases.
更多
查看译文
关键词
3D-bioprinted proangiogenic patch,cell-laden bioink,photo-crosslinked gelatin,polyurethane,ischemic disease
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要