Hybrid Density Functional Theory Calculations for the Crystal Structure and Electronic Properties of Al3+ Doped KDP Crystals

Crystals(2024)

引用 0|浏览0
暂无评分
摘要
Intentionally adding select ions such as Al3+ could be helpful in controlling the crystal habit of KDP crystal for high yield of optics. The study of how Al3+ ions affect crystal quality can provide a basis for selecting an appropriate doping level without negatively affecting the optical properties of crystals. Here, the influence of Al3+ ions on the crystal structure and properties of KDP crystals have been investigated by using first-principles calculations. Theoretical calculations show that Al3+ ions mainly replace K sites in KDP crystals and could complex with intrinsic VH− point defects to form AlK2+ + 2VH− cluster defects. The linear absorption spectra indicate that the presence of Al3+ ions has minimal impact on the linear absorption of KDP crystals, aligning well with the experimental findings. And Al3+ ions could cause a slight shortening of the band gap of KDP crystals. However, these ions could bring significant deformations of O-H bonds. As the concentration of Al3+ ions increase, more O-H bonds linking to PO4 groups are distorted in KDP crystals. As a result, the structural instability could be fast enhanced with increasing the defect concentration. Therefore, high concentrations of Al3+ ions could cause the instability of the crystal structure, which finally affects the laser-induced damage resistance of the KDP crystals. This manuscript contributes to a more comprehensive understanding of the physical mechanisms by which different impurity ions affect the optical properties of KDP crystals.
更多
查看译文
关键词
KDP,DFT,optical absorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要