谷歌浏览器插件
订阅小程序
在清言上使用

Discrete Time Crystal Phase as a Resource for Quantum Enhanced Sensing

arxiv(2024)

引用 0|浏览5
暂无评分
摘要
Discrete time crystals are a special phase of matter in which time translational symmetry is broken through a periodic driving pulse. Here, we first propose and characterize an effective mechanism to generate a stable discrete time crystal phase in a disorder-free many-body system with indefinite persistent oscillations even in finite-size systems. Then we explore the sensing capability of this system to measure the spin exchange coupling. The results show strong super-Heisenberg precision, in terms of system size, throughout the time crystal phase. As the spin exchange coupling varies, the system goes through a sharp phase transition and enters a non-time crystal phase in which the performance of the probe considerably decreases. We characterize this phase transition as a second-order type and determine its critical properties through a comprehensive finite-size scaling analysis. The performance of our probe is independent of the initial states and may even benefit from imperfections in the driving pulse.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要