Certified Adversarial Robustness of Machine Learning-based Malware Detectors via (De)Randomized Smoothing

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Deep learning-based malware detection systems are vulnerable to adversarial EXEmples - carefully-crafted malicious programs that evade detection with minimal perturbation. As such, the community is dedicating effort to develop mechanisms to defend against adversarial EXEmples. However, current randomized smoothing-based defenses are still vulnerable to attacks that inject blocks of adversarial content. In this paper, we introduce a certifiable defense against patch attacks that guarantees, for a given executable and an adversarial patch size, no adversarial EXEmple exist. Our method is inspired by (de)randomized smoothing which provides deterministic robustness certificates. During training, a base classifier is trained using subsets of continguous bytes. At inference time, our defense splits the executable into non-overlapping chunks, classifies each chunk independently, and computes the final prediction through majority voting to minimize the influence of injected content. Furthermore, we introduce a preprocessing step that fixes the size of the sections and headers to a multiple of the chunk size. As a consequence, the injected content is confined to an integer number of chunks without tampering the other chunks containing the real bytes of the input examples, allowing us to extend our certified robustness guarantees to content insertion attacks. We perform an extensive ablation study, by comparing our defense with randomized smoothing-based defenses against a plethora of content manipulation attacks and neural network architectures. Results show that our method exhibits unmatched robustness against strong content-insertion attacks, outperforming randomized smoothing-based defenses in the literature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要