谷歌浏览器插件
订阅小程序
在清言上使用

Superstructure of Fe5-x GeTe2 Determined by Te K-Edge Extended X-ray Absorption Fine Structure and Te Kα X-ray Fluorescence Holography

ACS omega(2024)

引用 0|浏览12
暂无评分
摘要
The local structure of the two-dimensional van der Waals material, Fe5-xGeTe2, which exhibits unique structural/magnetic phase transitions, was investigated by Te K-edge extended X-ray absorption fine structure (EXAFS) and Te K alpha X-ray fluorescence holography (XFH) over a wide temperature range. The formation of a trimer of Te atoms at low temperatures has been fully explored using these methods. An increase in the Te-Fe distance at approximately 150 K was suggested by EXAFS and presumably indicates the formation of a Te trimer. Moreover, XFH displayed clear atomic images of Te atoms. Additionally, the distance between the Te atoms shortened, as confirmed from the atomic images reconstructed from XFH, indicating the formation of a trimer of Te atoms, i.e., a charge-ordered (root 3 x root 3)R30 degrees superstructure. Furthermore, Te K alpha XFH provided unambiguous atomic images of Fe atoms occupying the Fe1 site; the images were not clearly observed in the Ge K alpha XFH that was previously reported because of the low occupancy of Fe and Ge atoms. In this study, EXAFS and XFH clearly showed the local structure around the Te atom; in particular, the formation of Te trimers caused by charge-ordered phase transitions was clearly confirmed. The charge-ordered phase transition is fully discussed based on the structural variation at low temperatures, as established from EXAFS and XFH.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要