Study on the mechanism of magnesium calcium alloys/mineralized collagen composites mediating macrophage polarization to promote bone repair

Xiaojing Nie,Yonghua Shi, Lei Wang, Wumidan Abudureheman,Jingxin Yang,Chen Lin

Heliyon(2024)

引用 0|浏览3
暂无评分
摘要
Magnesium-based composites are a focal point in biomaterials research. However, the rapid degradation rate of magnesium alloys does not align with the healing time of bone tissue. Additionally, the host reaction caused by magnesium implantation hampers its full osteogenic potential. To maintain an appropriate microenvironment, it is important to enhance both corrosion resistance and osteogenic activity of the magnesium matrix. In this study, a composite scaffold composed of mineralized collagen and magnesium alloy was utilized to investigate the regulatory effect of mineralized collagen on mouse macrophages and evaluate its impact on mouse bone marrow mesenchymal stem cells in terms of osteogenesis, immune response, and macrophage-induced osteogenic differentiation. This experiment examined the biocompatibility of mouse bone marrow mesenchymal stem cells and macrophage-induced osteogenic differentiation in vitro, and examined the expression levels of relevant pathways proteins. Magnesium calcium alloys/mineralized collagen exhibited extensive spreading, facilitated by broad and abundant pseudopodia that firmly adhered them to the material surface and promoted growth and pseudopodia formation. The findings revealed that magnesium calcium alloy/mineralized collagen scaffold materials induced osteogenic differentiation mainly through M2 polarization of macrophages. This effect was mainly mediated by promoting the integrin α2β1-FAK-ERK1/2 signaling pathways and inhibiting the RANK signaling pathways.
更多
查看译文
关键词
Magnesium-based metal,Osteogenic mechanism,Bone repair,Mineralized collagen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要