Fine-Grained Detection Model Based on Attention Mechanism and Multi-Scale Feature Fusion for Cocoon Sorting

Han Zheng,Xueqiang Guo, Yuejia Ma, Xiaoxi Zeng, Jun Chen,Taohong Zhang

Agriculture(2024)

引用 0|浏览0
暂无评分
摘要
Sorting unreelable inferior cocoons during the reeling process is essential for obtaining high-quality silk products. At present, silk reeling enterprises mainly rely on manual sorting, which is inefficient and labor-intensive. Automated sorting based on machine vision and sorting robots is a promising alternative. However, the accuracy and computational complexity of object detection are challenges for the practical application of automatic sorting, especially for small stains of inferior cocoons in images of densely distributed cocoons. To deal with this problem, an efficient fine-grained object detection network based on attention mechanism and multi-scale feature fusion, called AMMF-Net, is proposed for inferior silkworm cocoon recognition. In this model, fine-grained object features are key considerations to improve the detection accuracy. To efficiently extract fine-grained features of silkworm cocoon images, we designed an efficient hybrid feature extraction network (HFE-Net) that combines depth-wise separable convolution and Transformer as the backbone. It captures local and global information to extract fine-grained features of inferior silkworm cocoon images, improving the representation ability of the network. An efficient multi-scale feature fusion module (EMFF) is proposed as the neck of the object detection structure. It improves the typical down-sampling method of multi-scale feature fusion to avoid the loss of key information and achieve better performance. Our method is trained and evaluated on a dataset collected from multiple inferior cocoons. Extensive experiments validated the effectiveness and generalization performance of the HFE-Net network and the EMFF module, and the proposed AMMF-Net achieved the best detection results compared to other popular deep neural networks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要