Co/C Nanocomposites with Tunable Condensed States Induced by Conformation-Mediated Strategy for Electromagnetic Wave Absorption.

Mengyao Cui, Tianen Wu,Zhenguo Gao, Shengchong Hui, Yu Zhang, Yu Wei,Jiaoqiang Zhang,Hongjing Wu

Small (Weinheim an der Bergstrasse, Germany)(2024)

引用 0|浏览1
暂无评分
摘要
The strategic regulation of condensed state structures in multicomponent nanomaterials has emerged as an effective approach for achieving controllable electromagnetic (EM) properties. Herein, a novel conformation-mediated strategy is proposed to manipulate the condensed states of Co and C, as well as their interaction. The conformation of polyvinylpyrrolidone molecules is adjusted using a gradient methanol/water ratio, whereby the coordination dynamic equilibrium effectively governs the deposition of metal-organic framework precursors. This process ultimately influences the combined impact of derived Co and C in the resulting Co/C nanocomposites post-pyrolysis. The experimental results show that the condensed state structure of Co/C nanocomposites transitions from agglomerate state → to biphasic compact state → to loose packing state. Benefiting from the tunable collaboration between interfacial polarization and defects polarization, and the appropriate electrical conductivity, the diphasic compact state of Co/C nanocomposites achieves an effective absorbing bandwidth of 7.12 GHz (2.1 mm) and minimum reflection loss of -32.8 dB. This study highlights the significance of condensed state manipulation in comprehensively regulating the EM wave absorption characteristics of carbon-based magnetic metal nanocomposites, encompassing factors such as conductivity loss, magnetic loss, defect polarization, and interface polarization.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要