Microfluidic Chip Fabrication for Tumor Cell 3D Culture Based on Microwell Arrays.

Methods in molecular biology (Clifton, N.J.)(2024)

引用 0|浏览0
暂无评分
摘要
Compared with traditional 2D cell culture, 3D cell culture more closely resembles the original state of cells in vivo and enables the establishment of in vivo-like microenvironments and cell-cell interactions, thereby providing valuable cellular materials for numerous studies. The direct establishment of in vitro patient tumor models can enhance drug testing, cancer research, and individualized precision therapy. In this study, we propose a microfluidic chip based on microwell arrays for 3D tumor cell culture. This chip combines nanoscale channels and microwell arrays to precisely control cell distribution and nutrient diffusion, thus closely mimicking the tumor microenvironment. The incorporation of microwell arrays allows for simple and rapid high-throughput preparation of tumor spheroids, while promoting the formation of cell-cell and cell-matrix interactions, ultimately enhancing cell viability and function. Preliminary experiments using tumor cell lines validate the ability of the chip to support 3D tumor growth with enhanced physiological relevance. The microfluidic chip serves as a reliable and scalable platform for studying tumor biology and evaluating therapeutic efficacy and is anticipated to expedite cancer research and drug discovery.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要