Synthetic dimensions for topological and quantum phases

Communications Physics(2024)

引用 0|浏览0
暂无评分
摘要
The concept of synthetic dimensions works particularly well in atomic physics, quantum optics, and photonics, where the internal degrees of freedom (Zeeman sublevels of the ground state, metastable excited states, or motional states for atoms, and angular momentum states or transverse modes for photons) provide the synthetic space. In this Perspective article we report on recent progress on studies of synthetic dimensions, mostly, but not only, based on the research realized around the Barcelona groups (ICFO, UAB), Donostia (DIPC), Poznan (UAM), Kraków (UJ), and Allahabad (HRI). We describe our attempts to design quantum simulators with synthetic dimensions, to mimic curved spaces, artificial gauge fields, lattice gauge theories, twistronics, quantum random walks, and more. Quantum simulators study important models of condensed matter and high-energy physics. Research on synthetic dimensions has paved the way for studying exotic phenomena, such as curved space-times, topological phases of matter, lattice gauge theories, twistronics without a twist, and more
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要