Antibody responses in Klebsiella pneumoniae bloodstream infection: a cohort study.

bioRxiv : the preprint server for biology(2024)

引用 0|浏览0
暂无评分
摘要
Background:Klebsiella pneumonia (Kpn) is the fourth leading cause of infection-related deaths globally, yet little is known about human antibody responses to invasive Kpn. In this study, we sought to determine whether the O-specific polysaccharide (OPS) antigen, a vaccine candidate, is immunogenic in humans with Kpn bloodstream infection (BSI). We also sought to define the cross-reactivity of human antibody responses among structurally related Kpn OPS subtypes and to assess the impact of capsule production on OPS-targeted antibody binding and function. Methods:We measured plasma antibody responses to OPS (and MrkA, a fimbrial protein) in a cohort of patients with Kpn BSI and compared these with controls, including a cohort of healthy individuals and a cohort of individuals with Enterococcus BSI. We performed flow cytometry to measure the impact of Kpn capsule production on whole cell antibody binding and complement deposition, utilizing patient isolates with variable levels of capsule production and isogenic capsule-deficient strains derived from these isolates. Findings:We enrolled 69 patients with Kpn BSI. Common OPS serotypes accounted for 57/69 (83%) of infections. OPS was highly immunogenic in patients with Kpn BSI, and peak OPS-IgG antibody responses in patients were 10 to 30-fold higher than antibody levels detected in healthy controls, depending on the serotype. There was significant cross-reactivity among structurally similar OPS subtypes, including the O1v1/O1v2, O2v1/O2v2 and O3/O3b subtypes. Physiological amounts of capsule produced by both hyperencapsulated and non-hyperencapsulated Kpn significantly inhibited OPS-targeted antibody binding and function. Interpretation:OPS was highly immunogenic in patients with Kpn BSI, supporting its potential as a candidate vaccine antigen. The strong cross-reactivity observed between similar OPS subtypes in humans with Kpn BSI suggests that it may not be necessary to include all subtypes in an OPS-based vaccine. However, these observations are tempered by the fact that capsule production, even in non-highly encapsulated strains, has the potential to interfere with OPS antibody binding. This may limit the effectiveness of vaccines that exclusively target OPS. Funding:National Institute of Allergy and Infectious Diseases at the National Institutes of Health. Research in Context:Evidence before this study: Despite the potential of O-specific polysaccharide (OPS) as a vaccine antigen against Klebsiella pneumoniae (Kpn), the immunogenicity of OPS in humans remains largely unstudied, creating a significant knowledge gap with regard to vaccine development. A search of PubMed for publications up to March 18, 2024, using the terms " Klebsiella pneumoniae " and "O-specific polysaccharide" or "O-antigen" or "lipopolysaccharide" revealed no prior studies addressing OPS antibody responses in humans with Kpn bloodstream infections (BSI). One prior study 1 evaluated antibody response to a single lipopolysaccharide (which contains one subtype of OPS) in humans with invasive Kpn infection; however, in this study OPS typing of the infecting strains and target antigen were not described. Added value of this study: Our investigation into OPS immunogenicity in a human cohort marks a significant advance. Analyzing plasma antibody responses in 69 patients with Kpn BSI, we found OPS to be broadly immunogenic across all the types and subtypes examined, and there was significant cross-reactivity among structurally related OPS antigens. We also demonstrated that Kpn capsule production inhibit OPS antibody binding and the activation of complement on the bacterial surface, even in classical Kpn strains expressing lower levels of capsule.Implications of all the available evidence: While the immunogenicity and broad cross-reactivity of OPS in humans with Kpn BSI suggests it is a promising vaccine candidate, the obstruction of OPS antibody binding and engagement by physiologic levels of Kpn capsule underscores the potential limitations of an exclusively OPS-antigen based vaccine for Kpn. Our study provides insights for the strategic development of vaccines aimed at combating Kpn infections, an important antimicrobial resistant pathogen.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要