Boosting photocatalytic activity in ternary lamellar hierarchical structured ZnFe2O4/polymeric carbon nitride by constructing an electronic bridge

Youhai Zhao, Zishuang Guo,Yucheng Wang,Martin Birkett, Xiao Xiang, Chengang Zhang, Yaran Jin,Guangbo Che,Haiwang Wang,Chunbo Liu,Terence Xiaoteng Liu,Jian Qi

Journal of Environmental Chemical Engineering(2024)

引用 0|浏览0
暂无评分
摘要
Photocatalytic technology is one of the ideal approaches for clean energy production and environmental pollution control in the future. However, the rapid recombination of photo-generated charge carriers is a bottleneck problem of low solar energy conversion efficiency. Herein, a magnetic ZnFe2O4/Pt/polymeric carbon nitride (PCN) semiconductor catalyst is designed and prepared for high-performance photocatalytic hydrogen production reaction and photocatalytic degradation rate of RhB. It exhibits 339.31 μmol·g-1·h-1 hydrogen production rate and 96.08% photocatalytic degradation rate of RhB within 120min under visible light. The introduction of Pt, constructing an electronic bridge, accelerated the transfer of photo-generated carriers, meanwhile, the smaller band gap of the ternary composites enabled the generation of more photo-generated electrons. The internal electric field accelerated the accumulation of electrons and holes in the conduction band of ZnFe2O4 and valence band of PCN, thus photocatalytic activity is greatly enhanced. The electron-hole separation is also improved and the transport of photo-generated electrons is facilitated by the special structure of the heterojunction and the unique morphology of PCN. In addition, the used catalyst can be recovered through magnetic fields, and this magnetic catalytic system has great application prospects in the fields of photocatalytic hydrogen production and pollutant degradation.
更多
查看译文
关键词
ternary lamellar hierarchical structure,ZnFe2O4,PCN,photocatalytic hydrogen production,pollutant degradation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要