Chemically Amplified, Dry-Develop Poly(aldehyde) Photoresist

ECS Journal of Solid State Science and Technology(2024)

引用 0|浏览0
暂无评分
摘要
Abstract The catalytic decomposition of poly(phthalaldehyde) with a photoacid generator can be used as dry-develop photoresist, where the exposed film depolymerizes into small molecules to allow the development of features via controlled vaporization. Higher temperatures enabled shorter dry-development times, but also promoted faster photoacid diffusion that compromised pattern fidelity. Trihexylamine was used as a base quencher to counteract acid diffusion in a phthalaldehyde-propanal co-polymer photoresist. The propanal co-monomer in the polymer improves the vaporization rate because it has a higher vapor pressure than phthalaldehyde. Addition of the base quencher was found to improve the contrast, pattern fidelity, and ease-of-handling of the dry-develop resist in a direct-write UV lithography tool. The dry-development of 4 μm features was achieved with no appreciable residue. For large area features, a spatially variable exposure method was used to direct the residue away from the exposed area. The gradient exposure method was used to produce 100 μm features. Plasma etching after dry-development was also used to achieve residue-free dry-developed patterns. These results show the benefits of incorporating base additives into a dry-develop depolymerizable resist system and highlight the need for addressing residue formation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要