KAS-ATAC reveals the genome-wide single-stranded accessible chromatin landscape of the human genome

biorxiv(2024)

引用 0|浏览2
暂无评分
摘要
Gene regulation in most eukaryotes involves two fundamental physical processes – alterations in the packaging of the genome by nucleosomes, with active cis -regulatory elements (CREs) generally characterized by an open-chromatin configuration, and the activation of transcription. Mapping these physical properties and biochemical activities genome-wide – through profiling chromatin accessibility and active transcription – are key tools used to understand the logic and mechanisms of transcription and its regulation. However, the relationship between these two states has until now not been accessible to simultaneous measurement. To address this, we developed KAS-ATAC, a combination of the KAS-seq (Kethoxal-Assisted SsDNA sequencing and ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) methods for mapping single-stranded DNA (and thus active transcription) and chromatin accessibility, respectively, enabling the genome-wide identification of DNA fragments that are simultaneously accessible and contain ssDNA. We use KAS-ATAC to evaluate levels of active transcription over different classes of regulatory elements in the human genome, to estimate the absolute levels of transcribed accessible DNA over CREs, to map the nucleosomal configurations associated with RNA polymerase activities, and to assess transcription factor association with transcribed DNA through transcription factor binding site (TFBS) footprinting. We observe lower levels of transcription over distal enhancers compared to promoters, surprisingly high abundance of ssDNA immediately around/within CTCF occupancy footprints, and distinct nucleosomal configurations around transcription initiation sites associated with active transcription. Remarkably, most TFs associate equally with transcribed and non-transcribed DNA but a few factors specifically do not exhibit footprints over ssDNA-containing fragments. We anticipate KAS-ATAC to continue to derive useful insights into chromatin organization and transcriptional regulation in other contexts in the future. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要